Cognitive robotics: virtual and augmented reality and collaborative robotics
Development of the necessary technologies to create a work unit where human and robot operators work collaboratively. Robots need advanced spatial reasoning and perception capabilities to be able to perform tasks that require greater flexibility and skill than the tasks they can currently perform in the industry (tasks in which all actions are pre-programmed and the robot has little ability to adapt its movements to new situations).
Greater flexibility in robots allows them to execute new tasks and integrate into environments that were forbidden to them as in applications in which human and robotic operators simultaneously share tasks, applying each of their best capabilities. Technologies such as virtual reality (digital twin to simulate different robot-human scenarios) and augmented reality (object tracking, 3D reconstruction from SLAM) are enabling technologies for most advanced robotics applications. In addition, augmented reality supposes a natural communication interface between operator and robot.